تبلیغات
معلم5 فتحی - تاریخ ریاضیات در ایران

آموزشی.اطلاعات مفید علمی . سوال های درسی . تدریس ریاضی

تاریخ ریاضیات در ایران

تاریخ:جمعه 25 مهر 1393-07:50 ب.ظ

بررسی تاریخ ریاضیات ایران برای ما علاوه بر فایده های کلی، یک جنبه ی عاطفی و ریشه شناسی هم دارد. ما باید بتوانیم سهم واقعی ملت خود را در برپایی کاخ بلند ریاضیات امروز جهان به نوجوان و جوان ایرانی نشان دهیم، تا این توهم ِباطل برایش پدید نیاید که ایرانی تنها به مفاهیم رویایی و خیال پردازی های شاعرانه پرداخته است، بلکه دریابد نیاکانش در زمینه های علمی و منطقی هم به اندازه ی هر ملت دیگری کوشا بوده اند.
آنچه باید بشود

برای جستجوی ریشه های خلاقیت ریاضی ایرانیان در وهله ی نخست به تصحیح و چاپ علمی و انتقادی آثار ریاضی بازمانده، و ترجمه ی آثار عربی ریاضی دانان ایرانی نیاز داریم. در این راه کار بسیار کمی صورت گرفته است و مایه ی تأسف این که مصححان و مترجمان بسیاری از آن ها هم ریاضی دان نبوده اند. مثلا یکی از گرانبهاترین مآخذ ریاضی فارسی یعنی دانشنامه ی علایی (بخش ریاضیات) تاکنون چاپ نشده است. زمانی قرار بود مرحوم مجتبی مینوی آن را تصحیح و به وسیله ی انجمن آثار ملی منتشر کند، ولی سال ها گذشت و خبری نشد، تا امسال مینوی چشم از جهان فروبست. همچنین هشت سال پیش بنیاد فرهنگ ایران با آقای هوشنگ میر مطهری قراردادی برای تصحیح این کتاب بست، و عکس نسخه های متعدد این کتاب را فراهم کرد و در اختیار وی گذاشت، ولی ظاهرا ایشان آن چنان دامنه ی تحقیق و تتبع را وسیع گرفتند که رشته ی کار گسیخت و هنوز هم به جایی نرسیده است.

مورد دیگر از این قبیل آثار ِریاضی ِ«خواجه نصیر الدین» است، که دانشمندان ایرانی در گذشته آن ها را به فارسی ترجمه یا شرح کرده اند - از قبیل «تحریر اصول اقلیدس» ترجمه ی قطب الدین شیرازی - ولی بیشتر این آثار چاپ نشده، یا چاپ های آن ها غیر قابل استفاده است.

از همین قبیل است قسمت ریاضیات «درة التاج» قطب الدین شیرازی که متن چاپ شده ی آن جز احیانا برای ده - بیست تن اهل فن انگشت شمار قابل استفاده نیست، حال آن که گنجینه ای است سرشار از معلومات ریاضی گرد آمده تا پایان سده ی هفتم هجری (سیزدهم میلادی).

با کمال تأسف، ریاضی دانان ما از توجه به گنجینه ی آثار ریاضیات ایرانی بازمانده اند و تعداد کسانی که قادر به فهم این گونه آثار باشند هر روز کمتر می شود.

اکنون که از هر طرف سخن از پژوهش و تحقیق می رود، و هم شورای پژوهش های علمی تشکیل شده، و هم فرهنگستان علوم ایران، جا دارد که مسوولان این سازمان ها در پی چاپ و نشر انتقادی این متنها باشند، تا گام اول در راه ایجاد اوضاع مساعد برای بررسی تاریخ ریاضیات ایران فراهم آید.
کارهای دیگر

از کارهای دیگر باید همکاری ریاضی دانان با باستان شناسان باشد. چون بدبختانه درباره ی ریاضیات ایران پیش از اسلام آثار مکتوب چندانی در دست نیست، بلکه باید از مدارک غیر مستقیم استفاده کرد. مثلا با بررسی آثار معماری و تأسیسات آبیاری از قبیل قنات ها، کاریزها، آب انبارها، پل ها، طاق ها، ستون ها ... می توان دریافت که ایرانیان از چه نوع محاسبات ریاضی آگاهی داشته اند، ریاضیات عملی آن ها بر چه پایه های نظری استوار بوده، با کدام شکل های هندسی کار می کردند، و تا چه حد در اندازه گیری چیره دست بوده اند. همچنین، با بررسی آثار نجومی دانشمندان اولیه ی اسلامی، که پیرو سنت های ایرانی بوده اند، باید میزان دانش ریاضی ایرانیان دوره ی ساسانی را ارزیابی کرد.

باید کتیبه های عیلامی، و اسناد مالی به دست آمده از دوره ی هخامنشی و اشکانی را مورد بررسی دقیق قرار داد تا از سنت ریاضی که به ایرانیان آریایی رسیده، و هم از حساب بازرگانی که مورد بهره برداری آنان بوده است، آگاه شد.
البته، این کارها نیازمند دانش پژوهان کوشا و خستگی ناپذیر و فداکار است که از جان خود مایه بگذارند و فارغ از گرفت و گیر و داد و ستد و غوغای زندگی روزانه، در ازنای دهلیزهای پرپیچ و خم سیر فکری ملت خویش را بپویند.
اما در عین حال به مشوقان و حامیانی دور اندیش، قدرشناس و گشاده دست هم نیاز دارد که آب و نان و ابزار کار پژوهنده را فراهم آورند و به کار پژوهشگر بنگرند، نه به دفتر حضور و غیاب.
اگر چنین نکنیم، و اگر در اندیشه ی پروردن نسلی پژوهشگر حرفه ای راستین نباشیم، شک نیست که با گذشت هر سال جمع بیشتری «دکتر» و «متخصص» خواهیم داشت، ولی محققی که با دل و جان شوق تحقیق و جستجو داشته باشد چطور ؟

در ابتدا اسامی جمعی از ریاضی دانان ایرانی ذکر و بعد به تاریخچه مختصری قناعت می کنم.

1. خوارزمی، 2. احمد بن محمد نهاوندی، 3. یحیی بن ابی منصور، 4. خالد مروزی، 5. حبش حاسب، 6 تا 8 - بنو موسی (محمد، احمد و حسن بن موسی بن شاکر خوارزمی)، 9. ماهانی، 10. ابوحنیفه ی دینوری، 11. نیریزی، 12. ابوجعفر خازن، 13. عبدالرحمن صوفی، 14. صاغانی، 15. هروی، 16. بوزجانی، 17. خجندی، 18. کوشیار، 19. ابوسهل کوهی، 20. ابوالجود، 21. ابونصر عراق، 22. ابوعلی حبوبی، 23. ابوالحسن اهوازی، 24. محمد بن حسین، 25. کرجی، 26. ابن سینا.27-غیاث الدین محمد کاشانی 28- خانم مریم میرزاخانی29- استاد پرویز شهریاری- علی بن احمد نسوی


قدیمی ترین زمانی که تاریخ ریاضی دارد، پیش از میلاد مسیح است. از ابتدا که انسان بوده تا قرن 6 و 7 پیش از میلاد شاید بیشتر از یک میلیون سال این دوره، دوره کاربردی ریاضی بود. یعنی ریاضیات به این خاطره به وجود آمد که مردم در زندگی و عمل به آن نیاز داشتند. بعد دوره یونانی و دوره نظری است. یونانی ها حتی عددنویسی را نداشتند و فقط به هندسه توجه می کردند. آن زمان نه تنها از ریاضی بلکه از تمام دانشها آنچه به زندگی و عمل مربوط می شد خوار می شمردند. برخلاف امروز یونانیها دو دسته بودند:
آزادها و برده‌ها. این آزادها بودند که به فلسفه،ریاضیات و امور دینی پرداختند. یونانیها کار را عیب می‌دانستند. دانش را هم که به درد کارمی خوردد آنرا هم کوچک می‌دانستند و مخصوص برده‌ها.

شاید در بین برده‌ها بعضی از دانشها رشد کرده بوده که چون کسی آنها را ثبت نکرده ما از آن خبری نداریم. تنها کسی که نه تنها در ریاضیات نظری بلکه در زمینه دانشهای عملی هم کار کرد، ارشمیدس بود.

او هم برده ای بود که آزاد شد. بعد از دوره یونان به دوره ایران می‌رسیم اینکه می‌گویم دوره ایران به این معنی نیست که در آن دوره هیچ ریاضی دانی نبود اما درکل تقریباً همه ایرانی بودند و شاید یکی دوتا ریاضی‌دان اهل مصر وعده شان بسیار کم بود. پس واقعاً باید گفت دوره ریاضیات ایرانی. ریاضیات ایرانی هم دوره عملی است و به کارزندگی می خورد. عمده کاری که ریاضی دانان ایرانی کردند در سه فصل بوده:

1- حساب
2- جبر
3- مثلثات

درحساب اولین کار را محمد موسی خوارزمی انجام داد که مشهور هم بود به «المجوس». کتابی نوشت به نام «حساب هندی» خود این کتاب نمانده ولی ترجمه لاتین آن هست که ترجمه لاتینی آن نیز به نام الگوریتموس چاپ شده – الگوریتموس لاتینی شده همان الخوارزمی است – و از این طریق عدد نویسی هندی به اروپا راه یافت و الان در برخی کتابهای تاریخ ریاضیات آن را عددنویسی عربی! می گویند که هیچ ربطی به عربها ندارد. ما امروز به فرض می نویسیم 4444 با تکرار عدد 4 ولی عددهای 4 با هم فرق می کنند آن که سمت راست 4 و بعدی 40 و بعدی 400 و بعدی 4000 است و همین طور الی آخر. این را نوشتن موضعی اعداد می‌نامند. عددنویسی موضعی و شکل نوشتاری که با ده علامت می شود همه عددها را نوشت از کارهای خوارزمی است که البته از هندی ها گرفته. اگر شما دو عدد را به حساب یونانی بنویسید یا به ابجد خودمان که عدد نویسی را آنطوری می نوشتند آنوقت بخواهید این دو عدد را در هم ضرب کنید اصلاً در می‌مانید که چکار کنید. در حالی که اینجا در واقع الگوریتم وجود دارد. یعنی راه حل کلی برای ضرب و جمع و همه عملیات حساب.
بعد می رسیم به جبر. اولین کتاب جبر و مقابله را خوارزمی نوشت در قرن سوم هجری (1100 سال پیش). وقتی می گوید جبر منظورش زور نیست. منظورش همان معنایی است که این مصراع سعدی دارد.

جبر خاطر مسکین بلابگرداند.

مسلماً منظور سعدی این نیست که اگر به مسکین زور گفتی بلا گردانده می شود. یعنی جبران کردن. عدد منفی را از یک سمت معادله  به سمت دیگری ببری مثبت می شود به این کار می گفتند جبر. مقابله هم یعنی مقابل هم قرار دادن دو مقدار که بین آنها علامت تساوی است.

 

محمد بن موسی خوارزمی
محمد بن موسی خوارزمی

 

پس از خوارزمی – که نخستین قدم را در حل معادلات درجه اول و دوم برداشت – ریاضیدان‌های ایرانی کارش را ادامه دادند.

خیام معادلات درجه سوم را که به سیزده نوع تقسیم کرده بود به کمک مقطع‌های مخروطی حل کرد و فقط چند استثناء را به کمک جبر حل نمود. تا رسید به کاشانی که می‌خواست سینوس یک درجه را پیدا کند. او کتابی نوشت به نام «جیب و وتر» که در آن کتاب سینوس یک درجه را بر حسب سینوس 3 درجه بر اساس روشی کاملاً جبری تعیین کرد. اما چیزی که امروز به نام «رابطه کاردان» معرفی می‌کنند. عملاً به هیچ دردی نمی‌خورد جز اینکه ثابت می‌کند جواب‌های معادله درجه سوم به کمک رادیکال‌ها بیان می‌شود ولی معادله درجه سوم را به کمک روش کاردان تقریباً نمی توان حل کرد. اگر شما بخواهید به این روش حل کنید باید با روابط اعداد مختلط کاملاً آشنا باشید. تازه 6-5 ساعت طول می کشد تا یک معادله درجه سوم را حل کنید. در حالی که راه حل کاشانی راه حل کاشانی راه حل درست و منطقی است.

 


مجسمه خیام اثر استاد ابوالحسن صدیقی(شاگرد کمال الملک)

 

متاسفانه ما در دبیرستان‌ها و دانشگاه‌هایمان وقتی از معادله درجه سوم صحبت می‌کنیم می‌گوییم که این را «کاردان» ریاضیدان ایتالیایی در اواخر قرن شانزدهم به دست آورد یعنی صد سال پس از مرگ جمشید کاشانی. اگر چه روش کاشانی تقریبی است اما این تقریب را می‌توان تا هر درجه دلخواه به دست آورد یعنی شما می توانید ریشه های معادله درجه سه را با روش او تا پنج رقم، ده رقم یا تا هر رقم اعشار دلخواه به دست آورید و این روش بسیار عملی تر و ساده تر است ولی هیچ صحبتی از آن نمی شود.

یا شکل نوشتن اعداد اعشاری که ممیز می‌گذارند و تا چند رقم اعشار می‌روند. این شیوه به اسم «سیمون استه ون» ریاضیدان غربی نامیده شده. در حالیکه سیمون درست 150 سال پس از مرگ کاشانی به دنیا آمده و جمشید کاشانی کاشف این عددهای اعشاری است. او برای نخستین بار عددهای اعشاری را مطرح کرد و نوشت.

ولی امروز حتی توی دبیرستان ها و دانشگاههایمان به نام «استه ون» مشهور است.

در ضمن یادمان باشد این علامتهای ضرب، تقسیم، جمع، تفریق و تساوی که اینقدر ساده به نظر می رسد و خیال می کنیم اصلاً از ازل بوده اینها خیلی وقت نیست که پیدا شده. علامتهای جمع و تفریق در قرن 16 پیدا شد. روی بشکه های شراب. آن بشکه که پر بود علامت (+) می گذاشتند و بشکه ای که خالی بود علامت (-) یک ریاضی دان آلمانی به اسم «اشتیفن» همین علامتها را برای جمع و تفریق بکار برد. علامت تساوی را یک پزشک انگلیسی در قرن 17 بکاربرد. خودش توضیح می‌دهد: من چیزی را پیدا نکردم جز دو پاره خط موازی که نماینده برابری و تساوی باشد. پس جبر را خوارزمی آورد و بعد از آن خیام و دیگران. اینها همه چیز را شرح می دادند و با توضیح مسئله را حل می کردند و با تفسیر نه با فرمول.

و اما مثلثات. تمام چیزهای مربوط به مثلثات که بخصوص برای اختر شناسی مفید است یونانی ها بعضی مقدماتش را پیدا کرده بودند اما همه چیز را با هندسه توضیح می دادند. بنابراین می توان گفت تمامی مثلثات از آغاز تا انتها و حتی حل مثلث کروی در ایران ساخته شده. خوارزمی جدول سینوس‌ها را تنظیم کرد و پس از او دیگران ادامه دادند. چند دانشمندی که در این رابطه کار کردند یکی «ابوالوفای بوزجانی» است یکی «خجندی» است و «ابوریحان بیرونی» و... اینها روابط مثلثات را تا مثلثات کروی پیدا کردند. در حالی که بطلمیوس با هندسه این مسائل را حل می کرد که بسیار دشوار بود.الان هم فهمیدن و درک کردن «المجستی» کتاب بزرگ بطلمیوس بسیار دشوار است. در حالیکه خواندن نوشته های ابوریحان بیرونی که در کتابی به نام «قانون مسعودی» تنظیم کرده هیچ دشواری ندارد.

هندی‌ها به وتر می گفتند جیاب. بعضی ها معتقدند خوارزمی Sin را جیب نامید برای اینکه خواست هندی ها اثرشان را نگه دارند. اما «جیب» به عربی به معنی گریبان است. گریبان چه ربطی به Sin  دارد. در واقع نظر کسانی درست است که معتقدند این جیب نبود. جیپ بوده با حرف پ جیپ در پهلوی یعنی تیرک چون از روی سایه آن می شد زمان را حساب کرد. این را برای Sin بکاربرد. اما کسانی که آثار خوارزمی را دست نویس می کردند فکر کردند جیپ اصلاً به عربی معنی ندارد. بخصوص که عربی اصلاً پ ندارد گفتند این حتماً جیب بوده. حالا اگر معنی اش با آنچه خوارزمی بکاربرده ( یعنی Sin ) جور نمی شود خوب خوارزمی بکار برده. فرانسوی ها هم برای اولین بار اینها را ترجمه می کردند.همان گریبان ترجمه کردند. Sin به فرانسه یعنی گریبان که واقعاً هیچ ربطی به Sin ندارد.

خوارزمی کتاب «جبر و مقابله» اش دو قسمت است در قسمت اول مثالهایی می زند معادلات درجه اول و دوم را به تفصیل شرح می دهد که چطور باید حل شود کاملاً نظری بدون اینکه بگوید چرا این کار را می کنیم. این چیزها را آدم باید خودش متوجه شود. وقتی معادله درجه دوم را حل می کند. اگر دقت کنیم و کارهایی که می گوید اجرا نماییم دقیقاً رابطه امروزی بدست می آید (b±?b2-4ac-) بدون ± چون آنها عدد منفی را هنوز نمی شناختند.
البته بعضی از ریاضی دانان ایرانی عدد منفی را «قرض» یا «وام» و عدد مثبت را «دارایی» می‌گفتند. ولی کمتر بکار می بردند به هر حال داشته اند. خوب در نیمه اول کتاب این توضیحات را می دهد در نیمه دوم می گوید ما این چیزها را چرا گفتیم و اینکه در فقه اسلامی با دو اشکال مواجهیم یکی پیدا کردن قبله است و دیگری مسئله ارث. و اینها معادلاتی است که به کمکشان می شود مسئله ارث را حل کرد.

 

ابوالوفا محمد بن محمد بوزجانی
ابوالوفا محمد بن محمد بوزجانی

 

یا مثلاً ابوالوفای بوزجانی دو کتاب دارد که کاملاً مشخص است نظر به مردم و زندگی مردم داشته یکی کتاب «آنچه از هندسه به درد صنعتکاران می‌خورد» و دیگری کتاب «آنچه از حساب بدرد محاسبان می‌خورد» کتاب اول به نام «هندسه ایرانی» به فارسی ترجمه شده ولی کتاب دوم ترجمه هم نشده است.

مثال دیگر بحثی است در ریاضیات معروف به «چهارضلعی‌های ساکری» که از اسم «ساکری» ریاضیدان ایتالیایی گرفته شده و پایه‌ای است برای کشف هندسه‌های نا اقلیدسی «گاوس یا نوش بایای» مجاری و «لوباچوفسکی» روسی. در حالی که این چهارضعلی‌ها متعلق به «خیام نیشابوری» است و خیام قرن‌ها پیش از «ساکری» می‌زیسته است.

خیام می‌خواسته به وسیله این چهارضلعی های اقلیدس را ثابت کند. می گوید یک پاره خط درنظر می گیریم دوپاره خط در دوطرف عمود بر این و مساوی با هم رسم می‌کنیم. انتهای این دو پاره خط را به هم وصل می‌کنیم. نام این چهارضلعی چهارضلعی متساوی الساقین است. حال ببینیم که دو زاویه بالا منفرجه قائمه یا حاده است.
اکنون می‌دانیم که این چهارضلعی مستطیل و زاویه‌ها قائمه و مساوی هستند. خیام به درستی ثابت می‌کند که دو زاویه مساوی هستند و سپس با استفاده از اصل دیگری حاده بودن و منفرجه بودن آنها را رد می‌کند مه دو زاویه قائمه هستند. حاده بودن آنها هم عرض هندسه لوباچوفسکی و منفرجه بودن آنها هم عرض با هندسه «ریمانی» است.

 

خواجه نصیرالدین طوسی
خواجه نصیرالدین طوسی

 

خواجه نصیرالدین طوسی در «تقریر اقلیدس» این چهار ضلعی‌های خیام را نقل کرده است. کتاب او به لاتین و زبان‌های اروپایی ترجمه شده و به دست ساکری می‌رسد و او سعی می کند کارخیام را ادامه دهد. ولی به جایی نمی رسد. حالا به این چهارضلعی ها می گویند : چهارضلعی های ساکری. در حالی که قرن ها پیش خیام آن ها را مطرح کرده بود.

یکی از گرفتاری‌های ما این است که مثلاً کتابهای کاشانی روسی‌اش، انگلیسی‌اش، فرانسه‌اش ،‌آلمانی‌اش هست. اما فارسی اش را نداریم. او ایرانی است زبان ما هم فارسی است او هم نامه‌هایش به فارسی است و مطالبی هم به فارسی گفته است، اما این کتابهای علمی‌اش ترجمه فارسی ندارد. اگر بعضی از کتابهای اینها به فارسی ترجمه شده است، کسی آنها را ترجمه کرده که عربی خوب می‌دانسته است اما ریاضیات نمی‌دانسته این کتابها را کسی باید ترجمه کند که ریاضی ،‌ عربی و فارسی را با هم بلد باشد. یا کتابهای خیام هم فارسی اش را نداریم. البته خیام کتاب جبر و مقابله اش ترجمه شده اما انبوهی از کتابها هست که همینطور به عربی مانده و بیم آن می رود که ایرانی ها اصلاً فراموش کنند چنین ریاضی دانانی داشته اند. ایران از اواخر سده 2 هجری تا سده 9 هجری یعنی دست کم به مدت 600 سال مرکز دانش و مرکز ریاضی بود ما علاوه بر خیام ، ‌ابوریحان  بیرونی ،‌ابوالوفای بوزجانی و جمشید کاشانی را داشته ایم. اینها از بزرگان علم ریاضی هستند. چهار یا پنج سال پیش کنگره ای در پاریس تشکیل شد برای خیام. من تقریباً به همه سخنرانی ها دقت کردم اولاً خیام را می‌گویند الخیام و درنتیجه ریاضی دان عرب !
حتی یکی از سخنران‌ها هم نگفت آقا این اهل نیشابور ایران بود، ‌حتی یک نفر. جمشید کاشانی را می گوید الکاشی ریاضی دان عرب! آدم تعجب می کند کاشان کی جز عربستان بود یا نیشابور که خیام متولد آنجا بود. بعضی از اسامی را طوری عوض کرده اند که اصلاً نمی فهمیم. مثلاً فرض کنید فضل حاتم نیریزی. فکر می کنید فرنگیها به او چه می گویند ؟ نیریزی یکی از بزرگترین ریاضیدانهای ما بوده که اهل نیریز فارس است. این نیریزی را حالا به نام آناریتوس می خوانند. اصلاً به کلی با این اسم فرق دارد، و نهایتاً ریاضی دان عرب! و این فضل حاتم نیریزی 32 کتاب دارد خوب چون عربی زبان روز بوده به عربی نوشته حتی یکی از آنها به فارسی ترجمه نشده است. و یا ابوالوفای بوزجانی اهل بوزجان بود. بوزجان نزدیک تربت جام است. تربت جام معلوم است که مال ایران است. و خرابه های بوزجان هنوز هست باز می گویند ریاضی دان عرب ! چون نوشته هایش عربی است.

 

غیاث‌الدین جمشید کاشانی
غیاث‌الدین جمشید کاشانی

 

و یا مثلاً در زمان خشایارشاه دانشمند فیلسوفی داشتیم به نام «استاس» معروف به مغ بزرگ که به او زرتشت ثانی هم می‌گفتند. او به مصر رفت. مصر در آن موقع جزء ایران بوده و در آنجا شاگردانی را پرورش داد که تعدادی از فیلسوفان اولیه یونان شاگردان او بوده اند. روشن شده که «دموکری» شاگرد او بوده و سالها پیش او درس خوانده و نظریه به اصطلاح اتمی دموکری مال اوست.نظریاتی داشته و کتاب های استانس تا قرن های اولیه پس از اسلام بوده است. حرفم را خلاصه می کنم ما در ریاضی با دو اشکال مواجهیم یکی ترجمه کتابهای خودمان، دست‌کم به زبان امروز خودمان. ما مدام به دانشجو و دانش آموز می‌گوییم بروید پژوهش کنید. از روی چه پژوهش کنند؟ آخر باید کتابی در دست داشته باشند. باید این کتابها عیناً و بر هیچ تخریب به فارسی برگردد. ولی در عین حال به زبان ساده هم باشد. یعنی مثلاً کتاب خیام که معادلات درجه سوم است خیلی خوب ترجمه شده ولی یک دانشجو یا دانش آموز عادی اگر آنرا بخواند نمی‌فهمد. باید به زبان امروزی باشد تا بتوانند از آن استفاده کنند تا این دو مشکل برطرف نشود و درواقع پژوهش خواستن از دانش آموزان کار بیهوده ای است این را هم عرض کنم که تنها کتابهای ایرانی نیست. حتی مقدمات اقلیدس را هم نداریم که مربوط به 2000 سال پیش است.ما کتاب نیوتن را نداریم. کتاب برتراندراسل را نداریم.
ما نه تنها کتابهای ایرانی نداریم ،‌کتابهای خارجی را هم نداریم. درباره ریاضی عرض می کنم در زمینه های دیگر هم همینطور است تا زمانی که کتابها به زبان فارسی درنیاید ما همیشه لنگ خواهیم بود.

 

ابوریحان بیرونی
ابوریحان بیرونی





علم اموختن بر هر مرد و زن مسلمان واجب است
نظرات() 
باقری
چهارشنبه 29 بهمن 1393 09:59 ب.ظ
عالی بود ممنون
الهه
شنبه 26 مهر 1393 07:30 ب.ظ
خانم فتحی اشتباهی کامنتمو تو پست کسر ها گذاشتم...........خواش میکنم که بخونید و جوابمو بدید....ممنون میشم.
پاسخ عفت فتحی باغبادرانی : الهه جانم من چون وقت ندارم پاسخت را بعداً خواهم داد و هر کجای وب لاگم نظرت را بنویسی من می بینم .و دیدمش و خواندمش.
 
لبخندناراحتچشمک
نیشخندبغلسوال
قلبخجالتزبان
ماچتعجبعصبانی
عینکشیطانگریه
خندهقهقههخداحافظ
سبزقهرهورا
دستگلتفکر